
Efficient Evaluation Functions for Multi-Rover
Systems

Adrian Agogino1 and Kagan Tumer2

NASA Ames Research Center, Mailstop 2693, Moffett Field CA 94035, USA,
adrian@email.arc.nasa.gov

kagan@email.arc.nasa.gov

Abstract. Evolutionary computation can be a powerful tool in creat-
ing a control policy for a single agent receiving local continuous input.
This paper extends single-agent evolutionary computation to multi-agent
systems, where a collection of agents strives to maximize a global fitness
evaluation function that rates the performance of the entire system. This
problem is solved in a distributed manner, where each agent evolves its
own population of neural networks that are used as the control policies for
the agent. Each agent evolves its population using its own agent-specific
fitness evaluation function. We propose to create these agent-specific
evaluation functions using the theory of collectives to avoid the coordi-
nation problem where each agent evolves a population that maximizes
its own fitness function, yet the system has a whole achieves low values of
the global fitness function. Instead we will ensure that each fitness evalu-
ation function is both “aligned” with the global evaluation function and
is “learnable,” i.e., the agents can readily see how their behavior affects
their evaluation function. We then show how these agent-specific eval-
uation functions outperform global evaluation methods by up to 600%
in a domain where a set of rovers attempt to maximize the amount of
information observed while navigating through a simulated environment.

1 Introduction

Evolutionary computation combined with neural networks can be very ef-
fective in finding solutions to continuous single-agent control tasks, such
as pole balancing, robot navigation and rocket control[9, 6, 4]. The single-
agent task of these evolutionary computation methods is to produce a
highly fit neural network, which is used as the controller for the agent. We
would also like to use these evolutionary computation methods in impor-
tant multi-agent problems such as controlling constellations of satellites,
constructing distributed algorithms and routing over a data network. Un-
fortunately the single-agent methods cannot be used directly in a large
multi-agent environment since a single neural network cannot usually con-
trol an entire multi-agent system, due its large state-space and possible

communication limitations. Instead we will use an alternative approach
of having each agent use its own evolutionary algorithm attempting to
maximize its own evaluation function. For such a system there are two
fundamental issues that need to be addressed:

– ensuring that, as far as the provided global evaluation function is
concerned, the agents do not work at cross-purposes (i.e., making sure
that the private goals of the agents and the global goal are “aligned”);
and

– ensuring that the agents’ evaluation functions are “learnable” (i.e.,
making sure the agents can readily see how their behavior affects
their evaluation function).

This paper addresses these issues in the problem of coordination of a col-
lection of planetary exploration rovers based on continuous sensor inputs.

Current evolutionary computation methods address multi-agent sys-
tems in a number of different ways. In addition ant colony algorithms
[8, 3] solve the coordination problem by utilizing “ant trails,” providing
good results in path-finding domains. Other multi-agent neural-evolution
algorithms are able to take advantage of a large number of agents to
speed up the evolution process in domains where agents do not have the
problem of working at cross-purposes [1]. Instead this paper presents a
framework based on utility theory that directs the evolutionary process
so that agents do not work at cross-purposes, but still evolve quickly.
This process is performed by giving each agent its own evaluation func-
tion that is both aligned with the global evaluation function and as easy
as possible for the agent to maximize. These agents can then use these
evaluation functions in conjunction with the system designer’s choice of
evolutionary computation method. New evolutionary methods can even
be used to replace older ones without changing the evaluation functions,
allowing the latest advances in evolutionary computation to be leveraged,
without changing the design of the overall system.

This paper will first give a brief overview of the theory of collec-
tives in Section 2, showing how to make an agent’s evaluation function
learnable yet be aligned with the global evaluation function. In Section 3
we discuss the “Rover Problem” testbed where a collection of planetary
rovers will use neural networks to determine their movements based on
a continuous-valued array of sensor inputs. In Section 4 we first compare
the effectiveness of three different evaluation functions. Then we use re-
sults from the previous section to derive fitness evaluation function for the
agents in a simple version of the Rover Problem in a static environment.

Then we show how these methods perform in a more realistic domain with
a changing environment. Results show up to a 600% in the performance
of agents using agent-specific evaluation functions.

2 Multi-agent System Evaluation Functions

This section shows some principles of how to make good evaluation func-
tions, using the theory of collectives described by Wolpert and Tumer [11].
We first assume that there is a global evaluation function, G(z), which
is a function of all of the environmental variables and the actions of all
the agents, z. The goal of the multi-agent system is to maximize G(z).
However we will not have the agents maximize G(z) directly. Instead
each agent, η, will attempt to maximize its private evaluation func-
tion gη(z). The section will later show how to produce g(z)s that are
amenable to evolutionary computation maximization methods, such that
when all of the g(z)s are close to being maximized, G(z) is close to being
maximized.

2.1 Factoredness and Learnability

For high values of the global evaluation function, G, to be achieved, the
private evaluation functions need to have two properties, factoredness
and learnability. First we want the private evaluation functions of each
agent to be factored with respect to G, intuitively meaning that an ac-
tion taken by an agent that improves its private evaluation function also
improves the global evaluation function (i.e. G and gη are aligned). Specif-
ically when agent η takes an action that increases G then gη should also
increase. Also when an agent takes an action that reduces G, it should
also reduce gη. We will call such a evaluation function factored. Formally
an evaluation function g is factored when:

gη(z) ≥ gη(z′) ⇔ G(z) ≥ G(z′) ∀z, z′ s.t. z−η = z′−η .

where z−η and z′−η contain the components of z and z′ respectively, that
are not influenced by agent η. In game theory language, the Nash equi-
libria of a factored system are local maxima of G. In addition to this
desirable equilibrium behavior, factored systems also automatically pro-
vide appropriate off-equilibrium incentives to the agents an issue rarely
considered in the game theory / mechanism design literature, but critical
in the context of evolutionary learning.

Second, we want the agents’ private evaluation functions to have high
learnability, intuitively meaning that an agent’s evaluation function
should be sensitive to its own actions and insensitive to actions of others.
As a trivial example, any “team game” in which all the private functions
equal G is factored [2]. However team games often have low learnability,
because in a large system an agent will have a difficult time discerning
the effects of its actions on G. As a consequence, each η may have diffi-
culty achieving high gη in a team game. We call this signal/noise effect
learnability:

λη,gη(ζ) ≡
‖∇ζηgη(ζ)‖
‖∇ζ η̂

gη(ζ)‖
. (1)

Intuitively it shows the sensitivity of gη(z) to changes to η’s actions, as
opposed to changes to other agent’s actions. So at a given state z, the
higher the learnability, the more gη(z) depends on the move of agent η,
i.e., the better the associated signal-to-noise ratio for η.

2.2 Difference Evaluation Functions

Consider difference evaluation functions, which are of the form:

Dη ≡ G(z)−G(z−η + cη) (2)

where z−η contains all the variable not affected by agent η. All the compo-
nents of z that are affected by agent η are replaced with the fixed constant
cη. Such difference evaluation functions are factored no matter what the
choice of cη because the second term does not depend on η’s actions [11].
Furthermore, they usually have far better learnability than does a team
game because the second term of D which removes a lot of the effect of
other agents (i.e., noise) from η’s evaluation function. In many situations
it is possible to use a cη that is equivalent to taking agent η out of the
system. Intuitively this causes the second term of the difference evalua-
tion function to evaluate the fitness of the system without η and therefore
D evaluates the agent’s contribution to the global evaluation.

3 Continuous Rover Problem

This section will show how theory of collectives being used with evolu-
tionary computation can be used effectively in the Rover Problem. In this
problem, there is a set of rovers on a two dimensional plane, which are
trying to observe points of interests (POIs). A POI has a fixed position on

the plane and has a value associated with it. The observation information
from observing a POI is inversely related to the distance the rover is from
the POI. In this paper the distance metric will be the squared euclidean
norm, bounded by a minimum observation distance, d: 1

δ(x, y) = min{‖x− y‖2, d2} . (3)

While any rover can observe any POI, we will assume that an observation
will contribute no additional information than the closest observation.
Therefore as far as the global evaluation function is concerned, only the
closest observation counts 2. The global evaluation function is as follows:

G =
∑

i

Vi

minη δ(Li, Lη)
(4)

where Vi is the value of POI i, Li is the location of POI i and Lη is the
location of rover η. Note that this is actually the evaluation for a partic-
ular time step and cannot directly be used by an evolutionary algorithm.
However to simplify notation, all of the evaluation functions described in
the rest of the paper will be for a single time step. The actually evalua-
tion function used by any evolutionary algorithm will simply be the sum
of the single-time-step evaluation functions through the duration of the
episode.

At every time step the rovers see the world through eight continuous
sensors. From a rover’s point of view, the world is divided up into four
quadrants relative to the rover’s orientation, with two sensors per quad-
rant (see Figure 1). For each quadrant, the first sensor returns a function
of the POIs in the quadrant. Specifically the first sensor for quadrant q
returns the sum of the values of the POIs in its quadrant divided by their
squared distance to the rover:

s1,q,η =
∑
i∈Iq

Vi

δ(Li, Lη)
(5)

where Iq is the set of POIs in quadrant q. The second sensor is similar
except that it returns the sum of square distances from a rover to all the
1 The square euclidean norm is appropriate for many natural phenomenon, such as

light and signal attenuation. However any other type of distance metric could also
be used as required by the problem domain. The minimum distance is included to
prevent singularities when a rover is very close to a POI

2 Similar evaluation functions could also be made where there are many different levels
of information gain depending on the position of the rover. For example 3-D imaging
may utilize different images of the same object, taken by two different rovers.

other rovers in the quadrant:

s2,q,η =
∑

η′∈Nq

1
δ(Lη′ , Lη)

(6)

where Nq is the set of rovers in quadrant q.

Rover Sensor

POI Sensor

Fig. 1. Diagram of a rover’s sensor inputs. The world is broken up into four quadrants
relative to rover’s position. In each quadrant one sensor, senses points of interests,
while the other sensor senses other rovers.

The sensor space is broken down into four regions, since it is fairly
easy for a multi-layer perceptron to map inputs from four regions into a
two-dimensional output action. In addition there is a trade-off between
the granularity of the regions and the dimensionality of the input space. In
some domains the tradeoffs may be such that it is preferable to have more
or less than four sensor regions. Also, even though this paper assumes that
there are actually two sensors present in each region at all times, in real
problems there may be only two sensors on the rover, and they do a sensor
sweep at 90 degree increments at the beginning of every time step.

With four quadrants and two sensors per quadrant, there are a total
of eight continuous inputs. This eight dimensional sensor vector consti-
tutes the state space for a rover. At each time step the rover uses its
state to compute a two dimensional action. The action represents an x,y

movement relative to the rover’s location and orientation. The mapping
from state to action is done with a multi-layer-perceptron (MLP), with 8
input units, 10 hidden units and 2 output units. The MLP uses a sigmoid
activation function, therefore the outputs are limited to the range (0, 1).
The actions, dx and dy, are determined from substracing 0.5 from the
output and multiplying by the maximum distance the rover can move in
one time step:

dx = d(o1 − 0.5)
dy = d(o2 − 0.5)

where d is the maximum distance the rover can move in one time step,
o1 is the value of the first output unit, and o2 is the value of the second
output unit.

The MLP for a rover is chosen by a simple evolutionary algorithm. In
this algorithm each rover has a population of MLPs. At the beginning of
each episode step, an MLP for a rover is copied from its population using
an ε-greedy selector with ε equal to 0.1. The copied MLP is then mutated,
using the Cauchy Distribution, and used for the entire episode. When the
episode is complete, the MLP is evaluated by the rover’s evaluation func-
tion and inserted into the population. The worst performing member of
the population is then deleted. While this algorithm is not advanced, we
will show that it is effective if factored and highly learnable evaluation
functions are used. We would expect more advanced algorithms from evo-
lutionary computation, used in conjunction with these same evaluation
functions, to perform even better.

4 Results

The Rover Problem was tested in three different scenarios. There were
ten rovers in the first two scenarios and thirty rovers in the third scenario.
In each scenario, an episode consisted of 15 time steps, and each rover
had a population of MLPs of size 10. The world was 100 units tall and
115 units wide. All of the rovers started an episode 65 units from the left
boundary and 50 units from the top boundary. The maximum distance
the rovers could move in one direction during a time step, d, was equal
to 10. The rovers could not move beyond the bounds of the world. The
minimum distance, d, used to compute δ was equal to 5. In the first two
scenarios, the environment was reset at the beginning of every episode
as is typical in episodic domains. However the third scenario showed how

learning in changing environments could be achieved, by having the envi-
ronment change at the beginning of each episode. Note that in all three
scenarios addition other forms of continuous reinforcement learners could
have been used instead of the evolutionary neural networks. However neu-
ral networks are ideal for this domain given the continuous inputs and
bounded continuous outputs.

In each of the three scenarios three different evaluation functions were
tested. The first evaluation function was the global evaluation function
(G):

G =
∑

i

Vi

minη δ(Li, Lη)
(7)

The second evaluation function was the “perfectly learnable” evaluation
function (P):

Pη =
∑

i

Vi

δ(Li, Lη)
(8)

Note that the P evaluation function was equivalent to the global evalua-
tion funtion when there was only one rover. It also had infinite learnability
in the way it is defined in Section 2, since the P evaluation function for a
rover was not affected by the actions of the other rovers. However the P
evaluation function was not factored. In some sense P is the opposite of
G, since G is by definition factored, but has poor learnability. The final
evaluation function was the difference evaluation function, which can be
seen as in-between, the extremes of P and G. It does not have as high
learnability as P, but is still factored like G. For the rover problem the
difference evaluation function, D, is defined as:

Dη =
∑

i

Vi

minη′ δ(Li, Lη′)
−

∑
i

Vi

minη′ 6=η δ(Li, Lη)

=
∑

i

Ii,η(z)
Vi

δ(Li, Lη)

where Ii,η(z) is an indicator function, returning one if and only if η is
the closest rover to Li. The second term of the D is equal to the value of
all the information collected if rover η were not there. Note that for all
POIs where η is not the closest, the subtraction leaves zero. The difference
evaluation can be computed easily as long as η knows the position and
distance of the closest rover to each POI it can see. If η cannot see a
POI then it is not the closest rover to it. In the simplified form, this is a
very intuitive evaluation function yet it was generated mechanically from
the general form of the difference evaluation function. In this simplified

domain we could expect a hand-crafted evaluation function to be similar.
However the difference utility can still be used in more complex domains
with a less tractable form of the global utility, even when it is difficult to
generate a decent hand-crafted solution. Even when we do not have an
intuitive feel of what the difference evaluation function is computing, we
will still know it is factored and it is likely to be highly learnable.

4.1 Learning in Static Environment

The first experiment was performed using ten rovers and a set of POIs
that remained fixed for all episodes (see Figure 2). Results from Figure 3
(left) show that the rovers using D performed the best, by a wide margin.
Early in training, rovers using S performed better than rovers using G.
However since the learning curve of these rovers using S remained flat,
while the ones using G increased, the rovers using G eventually overtook
the ones using S. This phenomenon can be explained with factoredness
and learnability. The P evaluation function tends to be highly learnable
since it is only effected by the moves of a single rover. This high learn-
ability enables the rover to learn basic tasks very quickly, such as moving
towards a POI. However since the S is not factored, it is unable to do
more, since maximizing its own reward occasionally causes the rover to
take actions that hurt the global reward. In contrast rovers using G learn
slowly, since the global reward is effected by the actions of all the other
rovers. With time, however, rovers using the global reward slowly learn
to maximize to global evaluation function.

The second experiment was similar to the first on except that the
value of a POI went down each time it was observed by the closest agent.
This reduction in value models a domain where an agent receives less use-
ful new information with each successive observation. This was a harder
problem than the previous one, since the state of the entire world changed
more at every time step. However it was still very episodic as the values
of the POIs were reset at the beginning of every episode. Figure 3 (right)
shows that rovers using D, still performed much better than rovers using
the other evaluation functions. The main difference in this experiment
was that the rovers using G suffered more due to the low learnability of
G in this more complex domain.

4.2 Learning in Changing Environment

In the last experiment there were thirty rovers and the locations and val-
ues of thirty POIs were set randomly at the beginning of each episode (see

High Valued
POI

Low Valued
POIs

Rovers

Fig. 2. Diagram of world where points of interests are at fixed locations for every
episode.

Figure 4). The locations were chosen from a uniform distribution, within
the boundary of the scene. The changing of locations at each episode
forced the rovers to create a general solution, based on their sensor in-
puts, since each new episode is different from all of the episodes they
learned on. This type of problem is common in real world domains, where
the rovers will typically learn in a simulator and will later have to apply
their learning to the environment where they are deployed. Note that this
scenario could easily be turned into a non-episodic scenario, where the
locations of the POIs change over time. However for simplicity and con-
sistency, we use the episodic version in this paper. Figure 5 shows that
rovers using D still performed better than the other evaluation functions.
The P evaluation was especially ineffective in this scenario, probably due
to the high concentrations of rovers and POIs. With such high concentra-
tions, the selfish action caused by using P was often not very productive
since it was likely to lead a rover to observe a highly valued POI that was
already being observed by other rovers.

5 Conclusion

This paper has shown that even simple evolutionary algorithms can be
used in complex multi-agent systems, if the proper evaluation functions
are used. In simple continuos problems, the neural network based system
using the difference evaluation function, D(z), derived from the theory of
collectives was able to achieve high levels of performance since the evalua-

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

G
lo

ba
l E

va
lu

at
io

n

Number of Episodes

Difference

Global

Perfectly Learnable

 80

 100

 120

 140

 160

 180

 200

 220

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

G
lo

ba
l E

va
lu

at
io

n

Number of Episodes

Difference

Global

Perfectly Learnable

Fig. 3. Results for three different evaluation functions. Points of interests are
at fixed locations for every episode. Right Figure: Results when POI values constant
for duration of episode. Left Figure: Results when POI values decrease as they are
observed.

Fig. 4. World where POIs are placed at random locations at the beginning of each
episode. Rovers have to generalize their knowledge from one episode to the next.

tion function was both factored and highly learnable. In contrast systems
using the perfectly evaluation functions performed poorly, since the eval-
uation function was not factored. Also systems using the factored global
evaluation function also did not perform well since this evaluation func-
tion was not very learnable. These results held in a more difficult domain
with a changing environment. Rovers in this domain using the difference
evaluation function were still able to learn quickly even though they had
to generalize a solution learned in earlier environmental configurations to
new environmental configurations.

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

G
lo

ba
l E

va
lu

at
io

n

Number of Episodes

Difference

Global

Perfectly Learnable

Fig. 5. Results for three different evaluation functions in domain with changing envi-
ronment.

References

1. A. Agogino, K. Stanley, and R. Miikkulainen. Online interactive neuro-evolution.
Neural Processing Letters, 11:29–38, 2000.

2. R. H. Crites and A. G. Barto. Improving elevator performance using reinforcement
learning. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances
in Neural Information Processing Systems - 8, pages 1017–1023. MIT Press, 1996.

3. M. Dorigo and L. M. Gambardella. Ant colony systems: A cooperative learning
approach to the travelling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53–66, 1997.

4. F. Gomez and R. Miikkulainen. Active guidance for a finless rocket through neu-
roevolution. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence, Chicago, Illinois, 2003.

5. T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973.
6. David Moriarty and Risto Miikkulainen. Forming neural networks through efficient

and adaptive coevolution. Evolutionary Computation, 5:373–399, 2002.
7. W. Nicholson. Microeconomic Theory. The Dryden Press, seventh edition, 1998.
8. S. Rumeliotis, P. Pirjanian, and M. Mataric. Ant-inspired navigation in unknown

environments. In Proceedings, Autonomous Agents 2000, Barcelona, Spain, 2000.
9. K. Stanley and R. Miikkulainen. Efficient reinforcement learning through evolv-

ing neural network topologies. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002), San Francisco, CA, 2002.

10. W. Vickrey. Counterspeculation, auctions and competitive sealed tenders. Journal
of Finance, 16:8–37, 1961.

11. D. H. Wolpert and K. Tumer. Optimal payoff functions for members of collectives.
Advances in Complex Systems, 4(2/3):265–279, 2001.

